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The process by which self-organization occurs for two-dimensional incompressible viscous flow in a
friction-free box is investigated theoretically with the use of numerical simulations. It is shown by analytical
and numerical eigenfunction spectrum analyses that two basic processes for the self-organization are the
spectrum transfer by nonlinear couplings and the selective dissipation among the eigenmodes of the dissipative
operator, and they yield spectrum accumulation at the lowest eigenmode. The third important process during
nonlinear self-organization is an interchange between the dominant operators, which has hitherto been over-
looked in conventional self-organization theories and which leads to a final self-similar coherent structure with
the lowest eigenmode of the dissipative operator.@S1063-651X~96!12109-7#

PACS number~s!: 47.10.1g,52.35.Mw, 52.35.Ra

Theories and numerical investigations have been de-
scribed for self-organization in three-dimensional~3D! mag-
netohydrodynamic~MHD! plasmas@1,2#, two-dimensional
~2D! MHD plasmas@3#, 2D incompressible viscous fluids
@4–6#, and solitons described by the Korteweg–de Vries
~KdV! equation@7–9#. The theories of self-organization in
2D incompressible viscous fluids@4–6# are complex and are
not unified yet. On the other hand, if we start from a simple
definition for the self-organized state based on autocorrela-
tions, then the self-organized state so derived does depend
explicitly on the dissipative operator of the dynamical sys-
tem @10–12#. Some simulations on 3D MHD plasmas@12#
have reported data that show the dependence of the self-
organized state on the profile of the dissipation parameters.
The theory of self-organization in@10,11# will be useful to
unify the physical pictures of self-organization in the 2D
incompressible viscous fluids@4–6#. In this paper, we
present analytical and numerical investigations of the process
by which self-organization occurs for a 2D incompressible
viscous flow in a friction-free box.

We apply here the self-organization theory by one of the
authors~Y.K.! @10,11#, which is based on the realization of
the coherent sturcture with the minimum change rate of au-
tocorrelations for their instantaneous values, to 2D incom-
pressible viscous fluids. Taking the curl of the Navier-Stokes
equation, we use the following vorticity representation:

]v/]t52~u•¹!v1n¹2v, ~1!

whereu is the fluid velocity,v 5 “3u is the vorticity,n is
the kinematic viscosity, and“•u 5 0. The global autocor-
relationWv of v and its dissipation rate]Wv /]t are written,
respectively, as Wv 5 *v•vdV and ]Wv /]t 5
22*v•(n¹3¹3v)dV, where“•v 5 0 is used. Using
variational calculus to find the self-organized state for which
the rate of change for the autocorrelations of instantaneous
values is minimum, and defining a functionalF with the use
of a Lagrange multipliera as F[2]Wv /]t2aWv , we
obtain the following Euler-Lagrange equation fromdF 5 0
for the self-organized statev* @10,11#:

“3“3v*5~a/2n!v* . ~2!

When we work in the velocity representation of the Navier-
Stokes equation, we obtain the same type of Euler-Lagrange
equation for the velocityu* at the self-organized state, as
“3“3u*5(a/2n)u* @10,11#. Using the same procedure
in @10,11#, we obtain the following:Wv* 5 e2atWvR* 5

e2at*@vR* (x)#
2dV, v* 5 vR* (x)e

2(a/2)t , Wu*5e2atWuR*
5e2at*@uR* (x)#

2dV and u*5uR* (x)e
2(a/2)t. Here vR* (x)

anduR* (x) denote the eigensolutions forv* andu* for given
boundary values, which are supposed to be realized at the
state with the minimum dissipation rate. We find from these
equations that the eigenfunction ofv* (x) @or u* (x)# for the
dissipative operator2n“3“3v @or 2n“3“3u# consti-
tutes the self-organized and self-similar decay phase during
the time evolution. Fromd2F > 0, we obtain the following
associated eigenvalue problems for critical perturbations
dv that maked2F vanish, and the condition 0,a<a1 for
the state with the minimum dissipation rate@10,11#:
“3“3dvk 2lk

2dvk50, and “3“3duk2lk
2duk50.

Here,lk
2 [ ak/2n, ak andlk are the eigenvalues,dvk de-

notes the eigensolutions,a1 is the smallest positive eigen-
value, the boundary conditions aredvw•dS50, and the sub-
script w denotes the value at the boundary wall. When we
work inside a square friction-free box, Eq.~2! becomes
equivalent to the associated eigenvalue problems shown
above. Therefore, the decay constanta of the autocorrelation
Wv* ~orWu* ) at the self-organized state is equal to the small-
est eigenvaluea1 ~52nl1

2), andv* coinsides with the low-
est eigensolutiondv1.

We now analytically describe a physical picture for the
self-organization process by using an eigenfunction spectrum
analysis associated with the dissipative operator@10,11#.
Owing to the self-adjoint property of the present dissipative
operator@10,11#, the eigenfunctionsak for the associated ei-
genvalue problems form a complete orthogonal set and the
appropriate normalization is written as*ak•(“3“

3aj )dV 5 *aj • (“3“3ak)dV 5 lk
2*aj • akdV 5 lk

2d jk ,
where“3“3ak2lk

2ak50 is used. For the present case in-
side a square friction-free box with edge length 1 in the
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(x,y) plane, the normalized orthogonal eigensolutions of
avk for the vorticity andauk for the velocity are obtained as
follows:

avk52sin~ l kpx!sin~mkpy!k, ~3!

auk5
2

Al k21mk
2
„mksin~ l kpx!cos~mkpy!i

2 l kcos~ l kpx!sin~mkpy!j …, ~4!

wherelk
2 5 p2( l k

21mk
2), l k > 1, mk > 1, l k andmk are

mode numbers inx and y directions, respectively, andi, j ,
and k are the unit vectors inx,y, andz directions, respec-
tively. Here,“3auk 5 pAl k21mk

2avk . The distributions of
v andu at each instant can then be expanded with the use of

these normalized orthogonal eigenfunctionsavk andauk , as
follows: v 5 (k51

` cvkavk , and u 5 (k51
` cukauk , where

pAl k21mk
2cuk 5 cvk , and the spectra ofcvk andcuk (k 5 1,

2, . . .! depend now on timet. Substituting these equations
of v andu into Eq. ~1!, we obtain the following:

(
k51

`
]cvk

]t
avk52S (

k51

`

cukauk•¹ D S (
k51

`

cvkavkD
2 (

k51

`

nlk
2cvkavk . ~5!

With the use of Eqs.~3! and ~4!, the nonlinear coupling
terms and the dissipative terms in Eq.~5! are written, respec-
tively, as follows:

2(
i51

`

(
j51

`

~cuiaui•“ !cv jav j5(
i51

`

(
j51

`
cv icv j

l i
21mi

2 $~ l imj2mil j !†sin@~ l i1 l j !px#sin@~mi1mj !py#2sin@~ l i2 l j !px#

3sin@~mi2mj !py#‡1~ l imj1mil j !†sin@~ l i1 l j !px#sin@~mi2mj !py‡

2sin†@~ l i2 l j !px#sin@~mi1mj !py#‡%k. ~6!

2 (
k51

`

nlk
2cvkavk52 (

k51

`

2np2~ l k
21mk

2!cvksin~ l kpx!sin~mkpy!k. ~7!

We see the following three basic processes from Eqs.~6! and
~7!: ~A! The nonlinear coupling terms induce the spectrum
transfers to both the higher and the lower eigenmodes of
( l i6 l j , mi6mj ), while the eigenmode (l i ,mi) does not have
the nonlinear coupling with itself.~B! The dissipative terms
yield the selective dissipation among the eigenmodes, i.e.,
the higher spectral components dissipate more rapidly in pro-
portion to the decay constant ofnp2( l k

21mk
2). ~C! After a

long term dissipation with the spectrum transfers and the
selective dissipation, spectral componentscvk will become
smaller so thatucv icv j (mil j6 l imj )/( l i

21mi
2)u , 2np2( l k

2

1mk
2)cvk even to the lowest eigenmode (1,1)@cf. the right

hand sides of Eqs.~6! and ~7!#, and the dominant operator
changes consequently from the nonlinear coupling terms to
the dissipative terms. Due to~A!–~C!, the lowest eigenmode
persists to the end.

We now show some typical computational results. We
solve Eq.~1! in a dimensionless unit, inside a square friction-
free box in thex,y plane, with edge length 1. The fluid
velocity u 5 “c3k, where the stream functionc 5
c(x,y,t) is independent ofz, as are all other field variables.
The vorticity v 5 ¹3u 5 vk, and the relation between
v andc is given by¹2c 5 2v. We solve the hyperbolic
equation of Eq.~1! by using a scheme, named the KOND
~kernel optimum nearly analytical discretization algorithm!
scheme@14#, which has high numerical accuracy and sta-
bitilty. We use the SOR~successive over-relaxation! scheme
to solve the elliptic type equation¹2c 5 2v. Numerical

procedures at each time step are as follows;~1! solve¹2c 5
2v by the SOR scheme to get new values ofc, ~2! get new
values ofu from the newc, ~3! solve Eq.~1! by the KOND
scheme to get new values ofv, and~4! go to ~1! for the next
time step. The boundary conditions at the friction-free wall
are given bycw 5 0 andvw 5 0, where the subscriptw
denotes the values at the boundary wall. The simulation do-
main is implemented on a (1013101) point grid. The time
step isDt 5 0.0001. The kinematic viscosityn can, in the
dimensionless units, be interpreted as the reciprocal of a
Reynolds numberR based on unit length and a unit initial
rms velocity, i.e.,R 5 n21. We show here one of the typical
results of simulations for cases withR 5 500, whose initial
flow structures are different with each other and do not con-
tain the lowest eigenmode (1,1). In these cases, since the
smallest eigenvalue corresponding to the eigenmode
of (1,1) is l1 5 A2p, the theoretical decay constanta1

~52nl1
2) of the autocorrelationWu* at the self-organized

state has the same value of 0.789631021, which was com-
pared with the simulation results.

Figure 1 shows the typical time evolution of the vorticity
structure during the self-organization process, which starts
from an initial flow given by superposition of two eigen-
modes of (2,4) and (1,5) with the use of Eq.~4! for the
velocity. In earlier phases, the nonlinear process is seen to
change the initial simple structure of vorticity into the more
complicated structure with small scale deformations. Rotat-
ing clockwise around the center of the box~ cf. the vorticity
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contours att 5 1, 1.5, 4, and 10!, the two large positive
vorticity centers att 5 1.5 merge gradually into the larger
structure with one positive center att 5 10. The two outside
negative vorticity centers gradually vanish, and the simplest
structure with one positive vorticity center finally persists to
the end.

In order to check the physical picture for the self-
organization process described analytically in the preceding
section, we performed numerical eigenfunction spectrum
analysis for the simulation results shown in Fig. 1. Multiply-
ing the simulation data of vorticity by the normalized or-
thogonal eigensolutionsavk of Eq. ~3! and integrating the
results over the square box, we obtain numerically the spec-

tral components ofcvk at each time. Figure 2 shows the time
evolution of the resultant spectral components of vorticity,
which are obtained from the simulation data shown in Fig. 1.
The vorticity spectrum att 5 0 is shown to have only two
spectral components of (2,4) and (1,5) that correspond to the
initial flow with the relation“3auk 5 pAl k21mk

2avk . We
find from the spectrum att 5 1 that the nonlinear process
yields the spectrum transfer toward both the higher and the
lower spectral eigenmodes, in other words, it yields both the
normal and the inverse cascades. We recognize from the time
evolution of spectra aftert 5 1 that the higher spectral com-
ponents dissipate more rapidly and the spectrum transfer to-
ward the lower eigenmode region yields gradually spectrum
accumulation at the lowest eigenmode of (1,1) which per-
sists to the end, as is shown by the spectrum att 5 34. It
should be noted here that the eigenmode of (1,1) was not
contained in the initial flow att 5 0, but has been induced
nonlinearly during the self-organization process.

Figure 3 shows the time dependence of the flow energy
E for the case of Fig. 1, whereE is defined here byE 5
*u•udV and is equal to the global autocorrelationWu with
respect to the velocityu. After a rapid decay lasting until
aroundt ; 12, the decay rate ofE is seen to become almost
constant. At aroundt 5 25, the decay constant has a value of
0.79131021, which agrees very well with the theoretical
decay constant ofa1 5 2nl1

2 5 0.789631021.
Without dependence on different initial flow structures,

simulations for other cases yielded similar results with the
self-organization process, in the same way as was shown in
Figs. 1–3.

In conclusion, applying the self-organization theory by
one of the authors~Y.K.! @10,11# to the 2D incompressible
viscous fluids, we have shown that the lowest eigensolution
of Eq. ~2! is predicted to be the self-organized state and the
theoretical decay constanta of the autocorrelationWv* ~or
Wu* ) is equal to the smallest eigenvaluea1 ~52nl1

2). Using
the eigenfunction spectrum analysis associated with the dis-

FIG. 1. Typical time evolution of vorticity structures during
self-organization. The initial flow att 5 0 is given by superposition
of two eigenmodes of (2,4) and (1,5) with the use of Eq.~4! for the
velocity. The bold and the thin lines show contour plots of positive
vorticity and those of negative one, respectively. The height of con-
tours is normalized by the maximum absolute value of either the
positive or the negative vorticity in each figure.

FIG. 2. Time evolution of
spectral components of vorticity
during self-organization, obtained
from the simulation data shown in
Fig. 1. Horizontal scale is given
by the square of spectral eigenval-
ueslk

2 5 p2( l k
21mk

2) for eigen-
modes (l k ,mk). Vertical scale is
normalized by the maximum ab-
solute value of either the positive
or the negative spectral compo-
nentscvk in each figure.
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sipative operator@10,11#, we have analytically described a
physical picture for the self-organization process@from Eq.
~3! to Eq.~7! #, and have clarified the three basic processes of
~A!–~C! shown after Eqs.~6! and ~7!. In order to demon-
strate the self-organization process predicted by the theory,
we have presented the typical results of numerical simula-
tions, whose initial flow structures are simple but do not
contain the lowest eigenmode (1,1). It has been shown
clearly by the numerical eigenfunction spectrum analysis that
the nonlinear process leads finally to the simplest structure
with the lowest eigenmode (1,1), without dependence on the
different initial structures. After the initial rapid decay, the
numerical decay constant of the flow energyE has been
shown to agree very well with the theoretical one given by
a152nl1

2.
The analytical and the numerical investigations for the

self-organization presented here may lead to the following
physical picture for the self-organization process, which is

also common to other self-organization processes in solitons
described by the KdV equation with a viscous dissipation
term @9# and in 3D resistive MHD plasmas@13#: ~1! The
nondissipative nonlinear operator induces the spectrum
transfer toward both the higher and the lower eigenmode
regions of the dissipative operator~i.e., both of the normal
and the inverse cascades!. ~ The spectrum transfer toward the
lower eigenmode region yields spectrum accumulation at the
lowest eigenmode. The spectrum transfer to the higher eigen-
mode region results in the spread of the spectrum to the
infinity.! ~2! At the same time, the dissipative operator yields
the selective dissipation among the eigenmodes of the dissi-
pative operator, i.e., the higher spectral components dissipate
more rapidly with decay constants ofnlk

2 ~3! In the later
phase of self-organization, there occurs an interchange be-
tween the dominant operators from the nondissipative non-
linear operator to the dissipative operator, and the lowest
eigenmode consequently persists to the end as a final self-
similar coherent structure.

The study of the self-organization presented here suggests
that the principle of the minimum dissipation rate of enstro-
phy (Wv 5 *v•vdV) can be used for the theory of self-
organization as well as the principle of the minimum dissi-
pation rate of energy (E 5 *u•udV). However, the more
essential physics contained fundamentally is the principle of
the minimum dissipation rate of autocorrelations (Wii 5
*qi•qidV) in the dynamical systems@11#.

In the case of the periodic boundary condition~such as
reported in@4–6#!, the eigensolution ofavk for the vorticity
is given by avk5exp@ i2p( l kx1mky)#k, and the lowest
eigenmode of@~1,0!1~0,1!# is the self-organized state pre-
dicted by the present theory. Results of our numerical eigen-
function spectrum analysis for the case of the periodic
boundary condition will be reported elsewhere.

The authors greatly appreciate valuable discussion and
comments on this work by Professor T. Sato at the National
Institute for Fusion Science, Nagoya, Japan, and Dr. J. W.
Van Dam at the Institute for Fusion Studies, University of
Texas at Austin, U.S.A. This work has been supported by a
Grant-in Aid for Scientific Research from the Ministry of
Education, Science and Culture, Japan.

@1# J. B. Taylor, Rev. Mod. Phys.58, 741 ~1986!.
@2# R. Horiuchi and T. Sato, Phys. Fluids31, 1142~1988!.
@3# W. H. Matthaeus and D. Montgomery, Ann. NY Acad. Sci.

357, 203 ~1980!.
@4# W. H. Matthaeuset al., Physica D51, 531 ~1991!.
@5# W. H. Matthaeuset al., Phys. Rev. Lett.66, 2731~1991!.
@6# D. Montgomeryet al., Phys. Fluids A4, 3 ~1992!.
@7# A. Hasegawaet al., Phys. Rev. Lett.47, 1525~1981!.

@8# A. Hasegawa, Adv. Phys.34, 1 ~1985!.
@9# Y. Kondoh and J. W. Van Dam, Phys. Rev. E52, 1721~1995!.

@10# Y. Kondoh, Phys. Rev. E48, 2975~1993!.
@11# Y. Kondoh, Phys. Rev. E49, 5546~1994!.
@12# Y. Kondohet al., J. Phys. Soc. Jpn.63, 546 ~1994!.
@13# N. Kondo and Y. Kondoh, J. Plasma Fusion Res.71, 890

~1995!.
@14# Y. Kondohet al., Computers Math. Appl.27, 59 ~1994!.

FIG. 3. Time dependence of the flow energyE, defined byE 5
*u•udV, for the case of Fig. 1. The numerical value of the decay
constant at aroundt 5 25 is 0.79131021.
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