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Self-organization of two-dimensional incompressible viscous flow in a friction-free box
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The process by which self-organization occurs for two-dimensional incompressible viscous flow in a
friction-free box is investigated theoretically with the use of numerical simulations. It is shown by analytical
and numerical eigenfunction spectrum analyses that two basic processes for the self-organization are the
spectrum transfer by nonlinear couplings and the selective dissipation among the eigenmodes of the dissipative
operator, and they yield spectrum accumulation at the lowest eigenmode. The third important process during
nonlinear self-organization is an interchange between the dominant operators, which has hitherto been over-
looked in conventional self-organization theories and which leads to a final self-similar coherent structure with
the lowest eigenmode of the dissipative operdisi.063-651X96)12109-7

PACS numbegps): 47.10+9,52.35.Mw, 52.35.Ra

Theories and numerical investigations have been de- VXVXw*=(al2v)w*. 2
scribed for self-organization in three-dimensio(@D) mag-
netohydrodynamidMHD) plasmas[1,2], two-dimensional When we work in the velocity representation of the Navier-
(2D) MHD plasmas[3], 2D incompressible viscous fluids Stokes equation, we obtain the same type of Euler-Lagrange
[4-6], and solitons described by the Korteweg—de Vriesequation for the velocity* at the self-organized state, as
(KdV) equation[7—-9]. The theories of self-organization in VXV X u* =(a/2v)u* [10,1]. Using the same procedure

2D incompressible viscous fluidd—6] are complex and are in [10,11], we obtain the following:W* = e W, =
not unified yet. On the other hand, if we start from a simplee—atf[w;(x)]zdv, o = wh(x)e (U WE=e" W

definition for the self-organized state based on autocorrela- et fTuk(x) ]2V and_u* —uk(x)e (@2t Here wk(x)
r<l;1(f’1du’,;(x) denote the eigensolutions far* andu* for given

tions, then the self-organized state so derived does depe
explicitly on the dissipative operator of the dynamical sys—boundary values, which are supposed to be realized at the
eﬁgate with the minimum dissipation rate. We find from these

tem [10-12. Some simulations on 3D MHD plasmfs2]
have reported data that show the dependence of the s Lquations that the eigenfunction @f (x) [or u* (x)] for the

organized state on the profile of the dissipation parameters

The theory of self-organization if.0,11 will be useful to dissipative operator vV X VX w [or —»V XV Xu] consti-

) ; ; o tutes the self-organized and self-similar decay phase during
unify the physical pictures of self-organization in the 2Dthe time evolution. Erons2E = 0. we obtain the followin
incompressible viscous fluid§4—6]. In this paper, we ' -2 9

; SE Lo associated eigenvalue problems for critical perturbations
present analytical and numerical investigations of the proce

s > ) o
by which self-organization occurs for a 2D incompressiblegw that maked”F vanish, and the condition Q< e, for

viscous flow in a friction-free box. gi Vs’:?t; W'T)\ztge in(I)nlmurg leisvlp;tlson—;\%t[?oﬁg.

We apply here the self-organization theory by one of the 5 @k kO =0, an ) Ui ™ Aol =V
authors(Y.K.) [10,11, which is based on the realization of Heré.\i = a/2v, o, and\ are the eigenvaluegioy de-
the coherent sturcture with the minimum change rate of au©tes the eigensolutions, is the smallest positive eigen-
tocorrelations for their instantaneous values, to 2D incomValue, the boundary conditions afe,,- dS=0, and the sub-
pressible viscous fluids. Taking the curl of the Navier-Stoke$Cript w denotes the value at the boundary wall. When we

equation, we use the following vorticity representation: work inside a square friction-free box, E€) becomes
equivalent to the associated eigenvalue problems shown

above. Therefore, the decay constartf the autocorrelation
W2 (or W}) at the self-organized state is equal to the small-
est eigenvaluer; (=2v\?), andw* coinsides with the low-
whereu is the fluid velocity,w = V X u is the vorticity,» is  est eigensolutiodew; .

dowldt=—(u-V)o+ Vo, 1

the kinematic viscosity, an¥ -u = 0. The global autocor- We now analytically describe a physical picture for the
relationW,, of w and its dissipation ratéw,,/dt are written, ~ Self-organization process by using an eigenfunction spectrum
respectively, asW, = [w-wdV and oW,/dt = analysis associated with the dissipative operdtd,11].

—2fw- (vVXVXw)dV, whereV-w = 0 is used. Using Owing to the self-adjoint property of the present dissipative
variational calculus to find the self-organized state for whichoperator{10,11], the eigenfunctions, for the associated ei-
the rate of change for the autocorrelations of instantaneougenvalue problems form a complete orthogonal set and the
values is minimum, and defining a functiorfalwith the use ~ appropriate normalization is written asfa-(VXV

of a Lagrange multipliere as F=—dW,,/dt—aW,,, we X&)dV = [a - (VXVxa)dV = \{fa - adV = N5,
obtain the following Euler-Lagrange equation fraff = 0 whereV XV X a,—\2a,=0 is used. For the present case in-
for the self-organized stat@* [10,11]: side a square friction-free box with edge length 1 in the
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(x,y) plane, the normalized orthogonal eigensolutions ofthese normalized orthogonal eigenfunctiayg anda,, as
a, for the vorticity anda,, for the velocity are obtained as follows: @ = = S 1CokBuk, aNdU = S¢_ Cui@uk, Where

follows: w12+ mZcy, = ¢« and the spectra af,, andc, (k =
—9ai ; 2,...) depend now on timé. Substituting these equations
a,=2sinl sin(m, K, 3 ) . .
wk inlmx)sin(myry) @ of w andu into Eq. (1), we obtain the following:
2 o0 oo o]
k= == (Mysin(lmx) cog My ry)i ICk
VIE+mg k§=:1 o k=~ k§=:l Curdyk- V k§=:1 Cokuk
—lcoglmx)sin(myy)j), 4 .
_ 2
wheren? = #2(12+m2), I, = 1, m = 1, |, and m, are k; VNiCak@ouk )

mode numbers ix andy directions, respectively, and j,

andk are the unit vectors ix,y, andz directions, respec- With the use of Eqgs(3) and (4), the nonlinear coupling
tively. Here,VXa,, = m/lk2+ mkzawk. The distributions of terms and the dissipative terms in Ef) are written, respec-
w andu at each instant can then be expanded with the use dively, as follows:

oo

2, 2 (Cuda V), = E 2 e 7 iy = IS (1 1) mx]sinC (m+ my) ry] = sir{ (1 =1 mx]

XSir[(mi—mj)qry]]+(Iimj+ mil)[sin (1 +15) wx]sin{ (m;—m;) 7y]
—=sin[[(lj—1;) mx]sin (m;+m;) 7y ]]}k. (6)

)

- kgl UNZC kBuk= — kgl 2vm?(12+ m2)c sin(lemx) sin(memry)k. 7

We see the following three basic processes from Ejsand  procedures at each time step are as folloissolve V2y =
(7): (A) The nonlinear coupling terms induce the spectrum— w by the SOR scheme to get new values/of2) get new
transfers to both the higher and the lower eigenmodes ofalues ofu from the new, (3) solve Eq.(1) by the KOND
(=1, mi=m;), while the eigenmode {,m;) does not have scheme to get new values @f and(4) go to(1) for the next
the nonlinear coupling with itsel{B) The dissipative terms time step. The boundary conditions at the friction-free wall
yield the selective dissipation among the eigenmodes, i.eare given by, = 0 andw,, = 0, where the subscript
the higher spectral components dissipate more rapidly in pradenotes the values at the boundary wall. The simulation do-
portion to the decay constant ofr?(12+mg). (C) After a  main is implemented on a (164101) point grid. The time
long term dissipation with the spectrum transfers and thestep isAt = 0.0001. The kinematic viscosity can, in the
selective dissipation, spectral componeog;i will become  dimensionless units, be interpreted as the reciprocal of a
smaller so thafc,;c,,;(m;l;=I;m, )/(I +m?)| < 2vm?(12  Reynolds numbeR based on unit length and a unit initial
+ mk)(;wk even to the lowest e|genmode (1[xf. the right rms velocity, i.e.R = v~ 1. We show here one of the typical
hand sides of Eqg6) and (7)], and the dominant operator results of simulations for cases with = 500, whose initial
changes consequently from the nonlinear coupling terms tdow structures are different with each other and do not con-
the dissipative terms. Due té)—(C), the lowest eigenmode tain the lowest eigenmode (1,1). In these cases, since the
persists to the end. smallest eigenvalue corresponding to the eigenmode
We now show some typical computational results. Weof (1, 1) is\; = \27, the theoretical decay constant,
solve Eqg.(1) in a dimensionless unit, inside a square friction- (=2v\ ) of the autocorrelatlonl\l* at the self-organized
free box in thex,y plane, with edge length 1. The fluid state has the same value of 0.7898 !, which was com-
velocity u = Vy¢Xk, where the stream functiony = pared with the simulation results.
¥(x,y,t) is independent ot, as are all other field variables. Figure 1 shows the typical time evolution of the vorticity
The vorticity @ = VXu = wk, and the relation between structure during the self-organization process, which starts
w and s is given byV?y = —w. We solve the hyperbolic from an initial flow given by superposition of two eigen-
equation of Eq.(1) by using a scheme, named the KOND modes of (2,4) and (1,5) with the use of Ed) for the
(kernel optimum nearly analytical discretization algori)hm velocity. In earlier phases, the nonlinear process is seen to
scheme[14], which has high numerical accuracy and sta-change the initial simple structure of vorticity into the more
bitilty. We use the SORsuccessive over-relaxatipapcheme complicated structure with small scale deformations. Rotat-
to solve the elliptic type equatioN?) = —w. Numerical  ing clockwise around the center of the bogf. the vorticity
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tral components of ,, at each time. Figure 2 shows the time
evolution of the resultant spectral components of vorticity,
which are obtained from the simulation data shown in Fig. 1.
The vorticity spectrum at = 0 is shown to have only two
spectral components of (2,4) and (1,5) that correspond to the
initial flow with the relationV Xa,, = m/lzk+ mkzawk. We

find from the spectrum at = 1 that the nonlinear process
yields the spectrum transfer toward both the higher and the
lower spectral eigenmodes, in other words, it yields both the
normal and the inverse cascades. We recognize from the time
evolution of spectra aftdr= 1 that the higher spectral com-
ponents dissipate more rapidly and the spectrum transfer to-
ward the lower eigenmode region yields gradually spectrum
accumulation at the lowest eigenmode of (1,1) which per-
sists to the end, as is shown by the spectrurh at 34. It
should be noted here that the eigenmode of (1,1) was not

FIG. 1. Typical time evolution of vorticity structures during Contalned In th_e initial flow at :_O’ bUt has been induced
self-organization. The initial flow at= 0 is given by superposition nonl.lnearly during the sglf-organlzatlon process.
of two eigenmodes of (2,4) and (1,5) with the use of & for the Figure 3 shows the time dependence of the flow energy
velocity. The bold and the thin lines show contour plots of positiveE for the case of Fig. 1, wherk is defined here b =
vorticity and those of negative one, respectively. The height of cond U-udV and is equal to the global autocorrelatiag, with
tours is normalized by the maximum absolute value of either thg€spect to the velocityl.. After a rapid decay lasting until
positive or the negative vorticity in each figure. aroundt ~ 12, the decay rate @& is seen to become almost

constant. At arountl = 25, the decay constant has a value of
contours att = 1, 15, 4, and lp the two |arge positive 0.791x 1071, which agrees very well with the theoretical
vorticity centers at = 1.5 merge gradually into the larger decay constant of; = 2vAf = 0.7896<10 .
structure with one positive centertat= 10. The two outside Without dependence on different initial flow structures,
negative vorticity centers gradually vanish, and the simplessimulations for other cases yielded similar results with the
structure with one positive vorticity center finally persists to Self-organization process, in the same way as was shown in
the end. Figs. 1-3.

In order to check the physical picture for the self- In conclusion, applying the self-organization theory by
organization process described analytically in the precedingne of the authorsY.K.) [10,1] to the 2D incompressible
section, we performed numerical eigenfunction spectrum/iSCOUS fluids, we have shown that the lowest eigensolution
analysis for the simulation results shown in Fig. 1. Multiply- of EQ. (2) is predicted to be the self-organized state and the
ing the simulation data of vorticity by the normalized or- theoretical decay constamt of the autocorrelatioW;, (or
thogonal eigensolutiona,, of Eq. (3) and integrating the W) is equal to the smallest eigenvalug (=2v\3). Using
results over the square box, we obtain numerically the spedhe eigenfunction spectrum analysis associated with the dis-

Ck 1 LT T 1 Ck 1 T T ] Ck 1 [T
L 1o
0 0 I '|| 0 'li s FIG. 2. Time evolution of
spectral components of vorticity
during self-organization, obtained
-1}, 1 . —1!t N from the simulation data shown in
0 _ 1000 ()2 0 1000 (\;)? ) 1000 ();)2 Fig. 1. Horizontal scale is given
t=0 t=1 t=1.5 by the square of spectral eigenval-
Ciq — Ciqp — Ciqp — uesA? = w2(12+md) for eigen-
| modes (,,m,). Vertical scale is
normalized by the maximum ab-
l solute value of either the positive
0 L 0 by 0 or the nggative spectral compo-
H nentsc,, in each figure.
-1t . q —1t, ) q -1} )
(i _ 4 1000 (), 0 ¢ = 10 1000 (Xp)? _ g, 1000 (3,2
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I . T r T . T . : also common to other self-organization processes in solitons
described by the KdV equation with a viscous dissipation
= term [9] and in 3D resistive MHD plasmalsl3]: (1) The
] nondissipative nonlinear operator induces the spectrum
transfer toward both the higher and the lower eigenmode
] regions of the dissipative operat@re., both of the normal
Re=500 | and the inverse cascadesThe spectrum transfer toward the
lower eigenmode region yields spectrum accumulation at the
lowest eigenmode. The spectrum transfer to the higher eigen-
mode region results in the spread of the spectrum to the
infinity.) (2) At the same time, the dissipative operator yields
the selective dissipation among the eigenmodes of the dissi-
pative operator, i.e., the higher spectral components dissipate
more rapidly with decay constants m\ﬁ (3) In the later
4 phase of self-organization, there occurs an interchange be-
F ] tween the dominant operators from the nondissipative non-
(') : : : 2'0 : ! ' 4'0 linear operator to the dissipative operator, and the lowest
eigenmode consequently persists to the end as a final self-
Time similar coherent structure.
The study of the self-organization presented here suggests
FIG. 3. Time dependence of the flow enefgydefined byE = that the principle of the minimum dissipation rate of enstro-
Ju-udv, for the case of Fig. 1. The numerical value of the decayphy (W, = fw-wdV) can be used for the theory of self-
constant at arount = 25 is 0.79 10" ". organization as well as the principle of the minimum dissi-
pation rate of energyE = [u-udV). However, the more

10%

decay const.= 0.791 x 10~ 7

10‘2;

sipative operatof10,11, we have analytically described a : . . . o
physical picture for the self-organization proc¢fem Eq. essent_la_l phy3|c_s C.O”t?"”ed fundamentally is the principle of
(3) to Eq.(7) ], and have clarified the three basic processes oﬁhe minimum d|SS|pat|qn rate of autocorrelations/i( =
(A)—(C) shown after Eqs(6) and (7). In order to demon- Jai-qidv) in the dynamlcal §ysten{§.1]. .

strate the self-organization process predicted by the theory, In the case of the p_erlodlc bpundary cond|t|(muc.h.as
we have presented the typical results of numerical simulaiePorted inf4—6)), the eigensolution o, for the vorticity
tions, whose initial flow structures are simple but do not!S 9iven by a,=exgi2m(lx+mey)]k, and the lowest
contain the lowest eigenmode (1,1). It has been showr‘?!geande o{(1,0+(0.D] is the self-organized state pre-
clearly by the numerical eigenfunction spectrum analysis tha 'Cte‘?' by the present theor_y. Resulis of our numerical eigen-
the nonlinear process leads finally to the simplest structurfinction spectrum analysis for the case of the periodic

with the lowest eigenmode (1,1), without dependence on th oundary condition will be reported elsewhere.
different initial structures. After the initial rapid decay, the = The authors greatly appreciate valuable discussion and
numerical decay constant of the flow enerByhas been comments on this work by Professor T. Sato at the National
shown to agree very well with the theoretical one given byinstitute for Fusion Science, Nagoya, Japan, and Dr. J. W.
a1=2v)\§. Van Dam at the Institute for Fusion Studies, University of
The analytical and the numerical investigations for theTexas at Austin, U.S.A. This work has been supported by a
self-organization presented here may lead to the followingsrant-in Aid for Scientific Research from the Ministry of
physical picture for the self-organization process, which isEducation, Science and Culture, Japan.
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